# acronimous

## Latest Entries: (7 total)

 The Square Root of 7 2.6457513110645905905016157536392604257102591830824501803683344592010688232302 83627760392886474543610615064578338497463095743529888627214784427390555880107722 71715072972832389229968959486508726070097805420372382802371594110034193911600157 852... added11 months ago The Square Root of 21.414213562373095048801688724209698078 5696718753769480731766797379907324784621 0703885038753432764157273501384623091229 7024924836055850737212644121497099935831 4132226659275055927557999505011527820605 7147010955997160597027453459686201472851 7... added11 months ago The first 498 Bernoulli NumbersBernoulli(2)1/6 Bernoulli(4)-1/30 Bernoulli(6)1/42 Bernoulli(8)-1/30 Bernoulli(10)5/66 Bernoulli(12)-691... added11 months ago Fermatâ€™s Last TheoremFermat seems to have discovered its truth first for the case n = 3, and then for the case n = 4. His proof for the former of these cases is lost, but that for the latter is extantk , and a similar proof for the ... added11 months ago The First 10,000 Prime Numbers2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349... added11 months ago The First 300 Euler Numbers The first 300 Euler numbers as defined by: 2/(exp(t)+exp(-t)) = sum(exp(n)/n!*t^n, n = 0..infinity) are the coefficients of the series expansion. Euler(0)1 Euler(2)-1 ... added11 months ago The First 300 Fibonacci NumbersDefinition:F(n) = F(n-1)+F(n-2), each term is the sum of the 2 previous terms. 1 1 2 1 3 2 4 3 5 5 6 8 7 13 ... added11 months ago